Course Packs for the #ThinkingClassroom

I had the pleasure of welcoming Peter Liljedahl to visit my classroom this past week. Peter is the brains behind the Thinking Classroom framework that I’ve been implementing in my classroom over the last few years. While he was in town this week for the OAME Leadership conference he took the time to visit some Thinking Classrooms in the area and I was lucky enough to have him come visit ours. He spent a period with my grade 10 applied students where I was running a problem-based learning task (or 3 Act Math task) to do with solving for the missing angle in a right triangle.

20171108_143421-01.jpeg

Peter Liljedahl & Judy Larsen visit

The two most popular elements that most people know about Peter’s Thinking Classroom framework are vertical non-permanent surfaces and visibly random groups. Another of the elements is to have students take meaningful notes after the problem-solving task; giving them time to select, organize & synthesize the ideas they want to keep in their notes. My way of doing this has been to create course packs for each of the courses I teach. Peter shared out this idea during his keynote on Friday and a number of teachers were interested in hearing more about them and seeing examples, so I figure a blog post was in order!

What are my course packs?
They are approximately 10 pages long (1 page per overall expectation for the course) or 5 sheets back to back. There is a box for each of the key terms or skills they need to know (I pull these from the specific expectations listed in the curriculum docs). For my applied classes I usually fill it in with worked examples of the skills, but leave the key terms blank for them to complete (see below right). For my academic classes I usually leave every box blank for students to complete (see below left). I copy & staple one for each student and hand it out at the beginning of the course.

How do we use them?
A place for meaningful notes: After each activity we do, I get my students to take out their course pack & open to whichever page matches the content we covered that day. I give them time to write their own notes based on the student work on the boards, the short notes I may have written on a board or on their boards, and I’ve also suggested mathisfun.com as a good site for definitions at their level. I also encourage them to put both images & words in every box.
A reference document: When groups go up to their boards to solve the day’s problem, one of the 3 members is given the role of bringing the course pack (the other 2 are responsible for scribing and calculating, respectively). Groups will often look through the worked examples if they need some help solving the day’s problem or remembering how to do something. On individual practice days, students often have their course pack out to help them with their practice problems. When students are stuck on a problem, I’ll often ask them to show me where a similar problem is in their course pack & we’ll use that as our starting point as we work together.

Can I see some examples?
Sure can!
Grade 10 applied course pack
Destreamed grade 9 (applied & academic together) course pack:
Grade 10 academic course notes

Still have some questions? Hit me up in the comments below or on Twitter! Have you made some of your own? Share links to your course packs below too!

– Laura Wheeler (Teacher @ Ridgemont High School, OCDSB; Ottawa, ON)

Running VS Walking Headstart #MPM1D #MFM2P #3ActMath

A month ago or so I read a post by Mr. Hogg about his Fast Walker activity. I thought it would be a great way to introduce linear systems graphically to my combined grade 9 math class before the end of the semester. I also did this activity with my Grade 10 applied students – next semester I’ll use it as an introduction to systems graphically with them earlier in the course.

What turned out to be super awesome is that a student in my grade 9 class just won gold at OFSAA last week! So I tweaked Mr. Hogg’s activity to use Joe’s winning data in our problem. I also structured the activity to be a 3 act math task. Here’s what we did:

Act 1: Notice – Wonder – Estimate

Runner Speed (1)

What do you know / notice?Capture

What do you wonder?Capture

If you want to cross the finish line at the same time as Joe, what distance head start will you need?Capture.JPG

Act 2: Measure & Solve

Capture.JPG

Students were told they had to stay in class when taking measurements; my idea being to force them to time themselves walking over shorter distances (the length of our classroom) and then use that to model their speed for this problem given. Each student had to calculate their own head start:

This slideshow requires JavaScript.

Act 3: Check & Reflect

We went out to our 400m track and students measured out their starting position. They staggered themselves according to their calculation (photo below – tried to take video but my phone battery died). Most students were around 100m before the finish line (~300m head start). We counted down & Joe started running & the class started walking. I so wish I’d gotten the video because it was awesome how close they all finished to each other!DB6mp2rXgAE8O55

I had my grade 9s graph their walk & Joe’s run on the same grid. Here are their graphs overlaid on top of each other:
Capture
Most students had the right idea, and I talked to a few with incorrect graphs individually but when I look at this overlay now I can see that I missed helping a few students correct their work 😦

We discussed which line was partial variation & which one was direct. I then introduced the language of “linear system” and “point of intersection”. My 2P class time to create an equation for each line also.

The next time I try this, I’d like to add an individual follow up question such as if you only had a 50m head start, at what distance would you & Joe meet? At what time would that be?

Here are my files for this activity (the unassociated one is the Pear Deck slideshow).

Tech Tip: Did you know you can add the same Google Doc/file to multiple folders without copying it? I didn’t until recently. It was useful for this lesson because I wanted to have it in the folder for each of the 2 classes I did the lesson with! Once you’ve clicked on the file just press Shift+Z :Capture.JPG

– Laura Wheeler (Teacher @ Ridgemont High School, OCDSB; Ottawa, ON)

Yard Space #MPM1D/#MFM1P #PrBL

I took the typical “find the largest area given a specific perimeter” problem and created a hands-on, problem-based learning task for my combined grade 9 Math class (academic & applied combined):summary-2017-02-13-m9

Scenario:
capture
Ms. Wheeler wants to build a fenced in yard for Sally to run around in.
She buys 16 1-metre long sections of fence.

What do you wonder?

Physical & Visual Representations:

The yard must be fully enclosed. Use toothpicks to create show different ways of placing the 16 pieces of fencing (I forgot to take photos of this part but they made stuff like this):IMG_20170220_112029-01.jpeg

Draw your shape & label its dimensions:

Capture.JPG

How should the pieces be set up to create the largest enclosed area possible?

What shape offers the largest area?

square.JPG

We discussed that while a square was the largest rectangle possible, there were other shapes possible with greater areas.

How should the pieces be set up to create the largest enclosed area possible if Ms. Wheeler uses a wall of the house as one side of the enclosure?

We have some more exploration to do here. I left this pretty open and they explored various shapes. But I’m not sure they’ve drawn any solid conclusions just yet for the case where we have 1 side of the shape already accounted for.

Get the Pear Deck slideshow here.

– Laura Wheeler (Teacher @ Ridgemont High School, OCDSB; Ottawa, ON)

Height VS Foot length #MFM1P/#MPM1D #3ActMath

As an introduction to Linear Relations with my combined 1D/1P grade 9 Math class we investigated height VS foot length and the guinness record holder for the tallest woman:Summary 2017.02.08 (1).jpg

I asked students to measure their height and foot length and record it on a Google Spreadsheet we had up on the projector:

Capture.JPG

What do you notice?Capture.JPG

What do you wonder?Capture.JPG

I posed this question:

Zeng Jinlian was born in 1964 in Yujiang village in the Bright Moon Commune, Hunan Province, China. She holds the record as the tallest woman. She measured 2.48 m (8 ft 1.75 in) when she died on 13 February 1982. How long were her feet?

Estimate: _____ cmCapture.JPG

Students were sent in their VRG groups to their VNPS boards to solve. Here are their boards:

Since it is still early in the semester I scaffolded the activity a bit by instructing them to create a scatter plot of the data on their board to help them solve the problem. I did not however instruct them to use a line of best fit, although many groups used that strategy to help them come up with an answer. Some groups had graphs with a Height axis that went high enough to lookup Zeng’s height and find the corresponding foot length from the line of best fit. Other groups made an educated guess based on the trend the points were showing.

Each student was asked to determine her foot length based on their graph:Capture.JPG

Her real foot length was 35.5cm!

The following day students were assigned some individual practice with scatterplots on Khan Academy.

Activity materials (include a slide deck for Pear Deck) available here.

– Laura Wheeler (Teacher @ Ridgemont High School, OCDSB; Ottawa, ON)